Modified q-deformed Tamm-Dancoff oscillators as a model for vibrations of polyatomic molecule

Won Sang Chung

Received: 27 December 2013 / Accepted: 26 September 2014 / Published online: 4 October 2014
© Springer International Publishing Switzerland 2014

Abstract

In this paper we propose the modified q-deformed bosonic Tamm-Dancoff oscillator algebra and present the Hamiltonian for the modified q-deformed bosonic Tamm-Dancoff oscillators. We show that this Hamiltonian is equivalent to that of polyatomic molecule.

Keywords Modified Tamm-Dancoff oscillator • Polyatomic molecule • Vibration . Angular momentum algebra • Jordan-Schwinger method

1 Introduction

One of the most effective methods to approximate an intermediate statistics behavior is to consider deformed boson and deformed fermion systems. Recently, the q-deformed oscillator systems[1-7] have been applied to many areas of research in physics as well as mathematics. For instance, they have used to understand higher-order effects in the many-body interactions in nuclei [8,9], and also possible connections between the entanglement characteristics in quantum information theory and the properties of deformed boson systems have been investigated [10,11].

Historically, the q-deformed bosonic Tamm-Dancoff oscillator algebra was first introduced in [12], and some of its Hopf algebraic aspects were also discussed in [13]. Therefore, we call them the TD-oscillators model. It should be pointed out that some of the quantum statistical properties of this model with the range $q<1$ have been also considered in $[14,15]$ during the studies on the two-parameter p, q-deformed oscillators.

[^0]The Hamiltonian usually used for the description of vibrational modes of polyatomic molecule [16] is given by

$$
\begin{equation*}
H=\sum_{i} \hbar w_{i}\left(n_{i}+\frac{1}{2}\right)+\hbar \sum_{i} \frac{\gamma_{i}}{2}\left(n_{i}+\frac{1}{2}\right)^{2}+\sum_{i<j} \gamma_{i j}\left(n_{i}+\frac{1}{2}\right)\left(n_{j}+\frac{1}{2}\right) \tag{1}
\end{equation*}
$$

More specially, the Hamiltonian usually used for the description of vibrational modes of triatomic molecule [17-19] is

$$
\begin{align*}
H= & \hbar w_{1}\left(n_{1}+\frac{1}{2}\right)+\hbar w_{2}\left(n_{2}+\frac{1}{2}\right) \\
& +\frac{\gamma_{1}}{2}\left(n_{1}+\frac{1}{2}\right)^{2}+\frac{\gamma_{2}}{2}\left(n_{2}+\frac{1}{2}\right)^{2}+\gamma_{12}\left(n_{1}+\frac{1}{2}\right)\left(n_{2}+\frac{1}{2}\right) \tag{2}
\end{align*}
$$

The first and third term in this Hamiltonian describe an anharmonic oscillator, the second and fourth term describe another anharmonic oscillator. while the fifth term describes the cross-anharmonicity between them. The energy spectrum of this Hamiltonian is the same as that obtained from solving the Schrödinger equation for the Morse potential [20]. If we assume that atoms 1 and 3 are identical like in a molecule such as CO_{2}, the Hamiltonian (2) is then simplified as follows;

$$
\begin{align*}
H= & \hbar w\left(n_{1}+\frac{1}{2}\right)+\hbar w\left(n_{2}+\frac{1}{2}\right) \\
& +\frac{\gamma}{2}\left(n_{1}+\frac{1}{2}\right)^{2}+\frac{\gamma}{2}\left(n_{2}+\frac{1}{2}\right)^{2}+\gamma_{12}\left(n_{1}+\frac{1}{2}\right)\left(n_{2}+\frac{1}{2}\right) \tag{3}
\end{align*}
$$

In this paper we show that the q-deformed Tamm-Dancoff (TD) oscillator algebra is not appropriate for describing a model for vibrations of polyatomic molecule. We modify the TD-oscillator algebra to show that it can explain a model for vibrations of polyatomic molecule.

2 TD-oscillators as a model for vibrations of polyatomic molecule

The TD-oscillator algebra is defined as

$$
\begin{equation*}
a a^{\dagger}-q a^{\dagger} a=q^{N}, \quad\left[N, a^{\dagger}\right]=a^{\dagger}, \quad[N, a]=-a \tag{4}
\end{equation*}
$$

If we introduce the ground state $|0\rangle$ satisfying $a|0\rangle=0$, we have the following Fock representation

$$
\begin{align*}
N|n\rangle & =n|n\rangle, \quad n=0,1,2, \ldots \\
a^{\dagger}|n\rangle & =\sqrt{(n+1) q^{n}}|n+1\rangle, \quad a|n\rangle=\sqrt{n q^{n-1}}|n-1\rangle \tag{5}
\end{align*}
$$

where we used the relation

$$
\begin{equation*}
a^{\dagger} a=\{N\}_{q}=N q^{N-1} \tag{6}
\end{equation*}
$$

The algebra (4) was shown to have a Hopf algebra structure with the comultiplication, antipode and counit [7]. Coupling two of TD-oscillators, we can obtained the following Hamiltonian

$$
\begin{equation*}
H=w\left[a_{1}^{\dagger} a_{1} q^{N_{2}}+a_{2}^{\dagger} a_{2} q^{N_{1}}\right] \tag{7}
\end{equation*}
$$

where we set $\hbar=1$. The relevant eigenvalues of the Hamiltonian (7) are

$$
\begin{equation*}
E\left(n_{1}, n_{2}\right)=w\left\{n_{1}+n_{2}\right\}_{q} \tag{8}
\end{equation*}
$$

When q is real, we can set $q=e^{\tau}$. The energy eigenvalues given in Eq. (8), including terms up to τ^{2}, can be written as

$$
\begin{align*}
E\left(n_{1}, n_{2}\right)= & w\left[n_{1}+n_{2}+\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-1\right) \tau\right. \\
& \left.+\frac{\tau^{2}}{2}\left(n_{1}+n_{2}\right)\left(n_{1}+n_{2}-1\right)^{2}+\cdots\right] \tag{9}
\end{align*}
$$

This construction can be easily generalized to the case of M coupled TD-oscillators. The Hamiltonian then reads

$$
\begin{equation*}
H=w \sum_{i=1}^{M} a_{i}^{\dagger} a_{i} q^{\sum_{l=1}^{M} N_{l}-N_{i}} \tag{10}
\end{equation*}
$$

and its relevant energy eigenvalues are

$$
\begin{equation*}
E\left(n_{1}, n_{2}, \ldots, n_{M}\right)=w\left\{n_{1}+n_{2}+\cdots+n_{M}\right\}_{q} \tag{11}
\end{equation*}
$$

The energy eigenvalues (9) can be written as

$$
\begin{align*}
E\left(n_{1}, n_{2}\right)= & w\left[2 \tau-1+(1-3 \tau)\left(n_{1}+\frac{1}{2}\right)+(1-3 \tau)\left(n_{2}+\frac{1}{2}\right)\right. \\
& \left.+\tau\left(n_{1}+\frac{1}{2}\right)^{2}+\tau\left(n_{2}+\frac{1}{2}\right)^{2}+2 \tau\left(n_{1}+\frac{1}{2}\right)\left(n_{2}+\frac{1}{2}\right)+\cdots\right] \tag{12}
\end{align*}
$$

Comparing Eq. (12) with Eq. (3), we have $\tau=0$, which implies $q=0$. Thus, TD-oscillators cannot explain a model for vibrations of polyatomic molecule

3 Modified TD-oscillators as a model for vibrations of polyatomic molecule

In this section we consider the modified TD-oscillator algebra defined as

$$
\begin{equation*}
a a^{\dagger}-q^{\mu} a^{\dagger} a=q^{\mu N+\mu-1}, \quad\left[N, a^{\dagger}\right]=a^{\dagger}, \quad[N, a]=-a, \tag{13}
\end{equation*}
$$

where q, μ are real. If we introduce the ground state $|0\rangle$ satisfying $a|0\rangle=0$, we have the following Fock representation

$$
\begin{align*}
& N|n\rangle=n|n\rangle, \quad n=0,1,2, \ldots \\
& a^{\dagger}|n\rangle=\sqrt{(n+1) q^{\mu n+\mu-1}}|n+1\rangle, \quad a|n\rangle=\sqrt{n q^{\mu n-1}}|n-1\rangle \tag{14}
\end{align*}
$$

where we used the relation

$$
\begin{equation*}
a^{\dagger} a=\{N\}_{q, \mu}=N q^{\mu N-1} \tag{15}
\end{equation*}
$$

Coupling two of modified TD-oscillators, we can obtained the following Hamiltonian

$$
\begin{equation*}
H=w\left[a_{1}^{\dagger} a_{1} q^{\mu N_{2}}+a_{2}^{\dagger} a_{2} q^{\mu N_{1}}\right] \tag{16}
\end{equation*}
$$

The relevant eigenvalues of the Hamiltonian (16) are

$$
\begin{equation*}
E\left(n_{1}, n_{2}\right)=w\left\{n_{1}+n_{2}\right\}_{q, \mu} \tag{17}
\end{equation*}
$$

The energy eigenvalues given in Eq. (17), including terms up to τ^{2}, can be written as

$$
\begin{align*}
E\left(n_{1}, n_{2}\right)= & w\left[n_{1}+n_{2}+\left(n_{1}+n_{2}\right)\left\{\mu\left(n_{1}+n_{2}\right)-1\right\} \tau\right. \\
& \left.+\frac{\tau^{2}}{2}\left(n_{1}+n_{2}\right)\left\{\mu\left(n_{1}+n_{2}\right)-1\right\}^{2}+\cdots\right] \tag{18}
\end{align*}
$$

The energy eigenvalues (18) can be written as

$$
\begin{align*}
E\left(n_{1}, n_{2}\right)= & w\left[(1+\mu) \tau-1+(1-(2 \mu+1) \tau)\left(n_{1}+\frac{1}{2}\right)\right. \\
& +(1-(2 \mu+1) \tau)\left(n_{2}+\frac{1}{2}\right)+\tau \mu\left(n_{1}+\frac{1}{2}\right)^{2}+\tau \mu\left(n_{2}+\frac{1}{2}\right)^{2} \\
& \left.+2 \tau \mu\left(n_{1}+\frac{1}{2}\right)\left(n_{2}+\frac{1}{2}\right)+\cdots\right] \tag{19}
\end{align*}
$$

Comparing Eq. (19) with Eq. (3), we have $\mu=-1 / 2$, which implies that the modified TD-oscillators can explain a model for vibrations of polyatomic molecule. This
construction can be easily generalized to the case of M coupled TD-oscillators. The Hamiltonian then reads

$$
\begin{equation*}
H=w \sum_{i=1}^{M} a_{i}^{\dagger} a_{i} q^{\mu \sum_{l=1}^{M} N_{l}-\mu N_{i}} \tag{20}
\end{equation*}
$$

and its relevant energy eigenvalues are

$$
\begin{equation*}
E\left(n_{1}, n_{2}, \ldots, n_{M}\right)=w\left\{n_{1}+n_{2}+\cdots+n_{M}\right\}_{q, \mu} \tag{21}
\end{equation*}
$$

In this case, if we choose $\mu=-1 / M$, the Hamiltonian (20) describes a vibrational model of molecules consisting M atoms.

4 Angular momentum algebra related to the modified TD-oscillator algebra

In this section, we will discuss the angular momentum algebra related to the modified TD-oscillator algebra. Let us introduce the Jordan-Schwinger realization of this algebra as follows:

$$
\begin{equation*}
J_{+}=a_{1}^{\dagger} a_{2}, \quad J_{-}=a_{1} a_{2}^{\dagger}, \quad J_{3}=\frac{N_{1}-N_{2}}{2}, \quad \mathcal{L}=\frac{N_{1}+N_{2}}{2}, \tag{22}
\end{equation*}
$$

where is a total number operator satisfying

$$
\begin{equation*}
\left[\mathcal{L}, J_{3}\right]=\left[\mathcal{L}, J_{ \pm}\right]=0 \tag{23}
\end{equation*}
$$

and J_{3} and \mathcal{L} are hermitian. Then we have the following commutation relations:

$$
\begin{equation*}
\left[J_{+}, J_{-}\right]=2 J_{3} q^{2 \mu \mathcal{L}+\mu-2}, \quad\left[J_{3}, J_{ \pm}\right]= \pm J_{ \pm}, \tag{24}
\end{equation*}
$$

where J_{-}is an hermitian adjoint operator of J_{+}. The representation of this algebra is given by

$$
\begin{align*}
& J_{3}\left|n_{1}, n_{2}\right\rangle=\frac{1}{2}\left(n_{1}-n_{2}\right)\left|n_{1}, n_{2}\right\rangle, \quad \mathcal{L}\left|n_{1}, n_{2}\right\rangle=\frac{1}{2}\left(n_{1}+n_{2}\right)\left|n_{1}, n_{2}\right\rangle, \\
& J_{-}\left|n_{1}, n_{2}\right\rangle=\sqrt{q^{\mu\left(n_{1}+n_{2}\right)+\mu-2} n_{1}\left(n_{2}+1\right)}\left|n_{1}-1, n_{2}+1\right\rangle \\
& J_{+}\left|n_{1}, n_{2}\right\rangle=\sqrt{q^{\mu\left(n_{1}+n_{2}\right)+\mu-2}\left(n_{1}+1\right) n_{2}}\left|n_{1}+1, n_{2}-1\right\rangle \tag{25}
\end{align*}
$$

By introducing

$$
\begin{equation*}
n_{1}=j+m, \quad n_{2}=j-m \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
\widetilde{|j, m\rangle} \equiv|j+m, j-m\rangle=\left|n_{1}, n_{2}\right\rangle, \tag{27}
\end{equation*}
$$

we have the following representation:

$$
\begin{align*}
& J_{3}|\widetilde{j, m\rangle}=m| \widetilde{j, m\rangle}, \quad \mathcal{L}|\widetilde{j, m\rangle}=j| \widetilde{j, m\rangle} \\
& J_{-} \widetilde{\left.j_{j, m}\right\rangle}=\sqrt{q^{2 \mu j+\mu-2}(j+m)(j-m+1)}|\widetilde{j, m-1}\rangle \\
& \left.J_{+}\left|\widetilde{j, m\rangle}=\sqrt{q^{2 \mu j+\mu-2}(j+m+1)(j-m)}\right| \widetilde{j, m+1}\right\rangle \tag{28}
\end{align*}
$$

Because $J_{+}|\widetilde{j, j}\rangle=J_{-}|\widetilde{j,-j}\rangle=0$, the representation is bounded below and above and the possible value of m is given by

$$
\begin{equation*}
m=-j,-j+1,-j+2, \ldots, j-2, j-1, j \tag{29}
\end{equation*}
$$

So we have the finite dimensional Fock space. Applying J_{+}to the lowest state $\mid \widetilde{j,-j\rangle} 2 j+1$ times, we have

$$
\begin{equation*}
\left(J_{+}\right)^{2 j+1}|\widetilde{j,-j}\rangle=0 \tag{30}
\end{equation*}
$$

and applying J_{-}to the highest state $\mid \widetilde{j, j\rangle} 2 j+1$ times, we have

$$
\begin{equation*}
\left(J_{-}^{\dagger}\right)^{2 j+1}|\widetilde{j, j}\rangle=0 \tag{31}
\end{equation*}
$$

5 Conclusion

In this paper we found that the q-deformed Tamm-Dancoff oscillator algebra was not appropriate for describing a model for vibrations of polyatomic molecule. Thus, we modified the TD-oscillator algebra by introducing one more parameter μ and showed that it could explain a model for vibrations of polyatomic molecule. Finally, using Jordan-Schwinger method, we presented the angular momentum algebra related to the modified TD-oscillator algebra.

Acknowledgments This work was supported by the Gyeongsang National University Fund for Professors on Sabbatical Leave, 2006.

References

1. M. Jimbo, Lett. Math. Phys. 10, 63 (1985)
2. M. Jimbo, Lett. Math. Phys. 11, 247 (1986)
3. V. Drinfeld, in Proceedings of International Congress of Mathematicians (Berkeley, 1986), p. 78
4. M. Arik, D. Coon, J. Math. Phys 17, 524 (1976)
5. A. Macfarlane, J. Phys. A 22, 4581 (1989)
6. L. Biedenharn, J. Phys. A 22, L873 (1990)
7. W. Chung, K. Chung, S. Nam, C. Um, Phys. Lett. A 183, 363 (1993)
8. K.D. Sviratcheva, C. Bahri, A.I. Georgieva, J.P. Draayer, Phys. Rev. Lett. 93, 152501 (2004)
9. A. Ballesteros, O. Civitarese, F.J. Herranz, M. Reboiro, Phys. Rev. C 66, 064317 (2002)
10. M.C. Tichy, F. Mintert, A. Buchleitner, J. Phys. B At. Mol. Opt. Phys. 44, 192001 (2011)
11. A.M. Gavrilik, Y.A. Mishchenko, Phys. Lett. A 376, 1596 (2012)
12. K. Odaka, T. Kishi, S. Kamefuchi, J. Phys. A Math. Gen. 24, L591 (1991)
13. S. Chaturvedi, V. Srinivasan, R. Jagannathan, Mod. Phys. Lett. A 8, 3727 (1993)
14. A.M. Gavrilik, A.P. Rebesh, Mod. Phys. Lett. A 22, 949 (2007)
15. A.M. Gavrilik, A.P. Rebesh, Mod. Phys. Lett. B 25, 1150030 (2012)
16. G. Herzberg, Molecular Spectra and Molecular Structure, vol. 3 (Van Nostrand, Toronto, 1979)
17. M. Kellman, J. Chem. Phys. 81, 389 (1984)
18. M. Kellman, Chem. Phys. Lett. 113, 489 (1985)
19. M. Kellman, J. Chem. Phys. 83, 3843 (1985)
20. F. Iachello, S. Oss, Phys. Rev. Lett. 66, 2976 (1991)

[^0]: W. S. Chung (\triangle)

 Department of Physics and Research Institute of Natural Science, College of Natural Science, Gyeongsang National University, Jinju 660-701, Korea
 e-mail: mimip4444@hanmail.net

